Solid State

Solids

- The fixed, closely packed arrangement of particles causes a solid to have a definite shape and volume
- A solid is a kind of matter that has a fixed shape and a fixed volume. Your pencil is a solid. The shape and volume of your pencil will not change if you move the pencil from place to place.
- The different elements and compounds that make up matter can be called particles. The particles of a solid are packed closely together.
- The particles of a solid cannot move from their spot within the solid. However, the particles can move slightly back and forth in place.

A solid looks likes as at particle form

Properties of Solids

- Molecules, atoms or ions
 locked into a CRYSTAL
 LATTICE
- Particles are CLOSE together
- STRONG INTERMOLECULAR forces
- Highly ordered, rigid, incompressible

Example:ZnS(zinc sulfide)

Properties of Solids

- Melting point The crystal lattice of a solid breaks converting to a liquid
- ➤ Enthalpy of fusion Energy needed to convert one mole from Solid → Liquid
 - It increases with increasing Molecular weight due to strength of Intermolecular forces
 - It increases in ionic compounds due to increase in lattice energy (depends on size and charge)

Sublimation – Conversion of a solid to a gas

Types of Solids

TYPE Ionic Metallic Molecular

Network

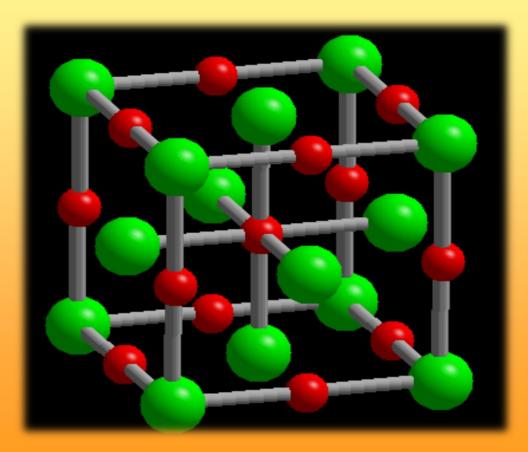
EXAMPLE NaCl, CaF₂, ZnS Na, Fe Ice, I₂

Diamond Graphite FORCE Ion-ion Metallic Dipole Ind. dipole Extended covalent

Types of Solids		
Туре	Built from	Examples
Amorphous	Covalently bonded network with limited ordering	Glass, plastics, polymers
Ionic	+ and – ions	NaCl, CsCl, (NH ₄) ₂ SO ₄
Metallic	Atoms or metallic ions in sea of e ⁻	
Molecular	Molecules with internal covalent bonds, and intramolcular attractions: dipole-dipole, H- bond, London dispersion	H ₂ , ice, I ₂ , CH ₃ OH
Network	Atoms held in network covalent bonds	Graphite, diamond, quartz

> Ionic crystals

The ionic crystals consist of positively and negatively charged ions arranged in a regular fashion throughout the crystal.

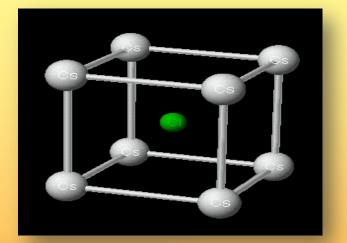

Covalent or Network crystals

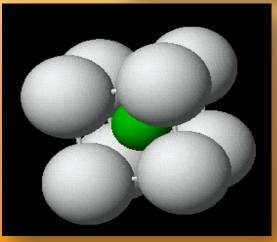
In covalent crystals, the constituent particles are atoms of the same or different kind, which are bonded to one another by a network of covalent bonds.

Metallic crystals

In metallic crystals the constituent particles are positive metal ions (kernels) i.e., nuclei where inner electrons are dispersed in a sea of mobile valence electrons.

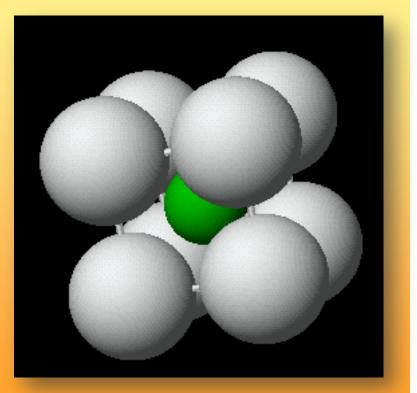
Metallic and Ionic Solids

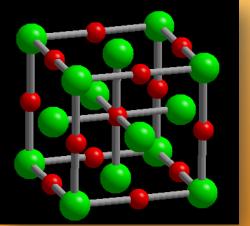

Simple Ionic Compounds


Lattices of many simple ionic solids are built by taking a SC or FCC lattice of ions of one type and placing ions of opposite charge in the holes in the lattice.

Example: CsCl has a SC lattice of Cs⁺ ions with Cl⁻ in the center.

Simple Ionic Compounds


- CsCl has a SC lattice of Cs⁺ions with Cl⁻ in the
- center. 1 unit cell has 1 Cl⁻ ion plus
- (8 corners)(1/8 Cs⁺ per corner) = 1 net Cs⁺ ion.



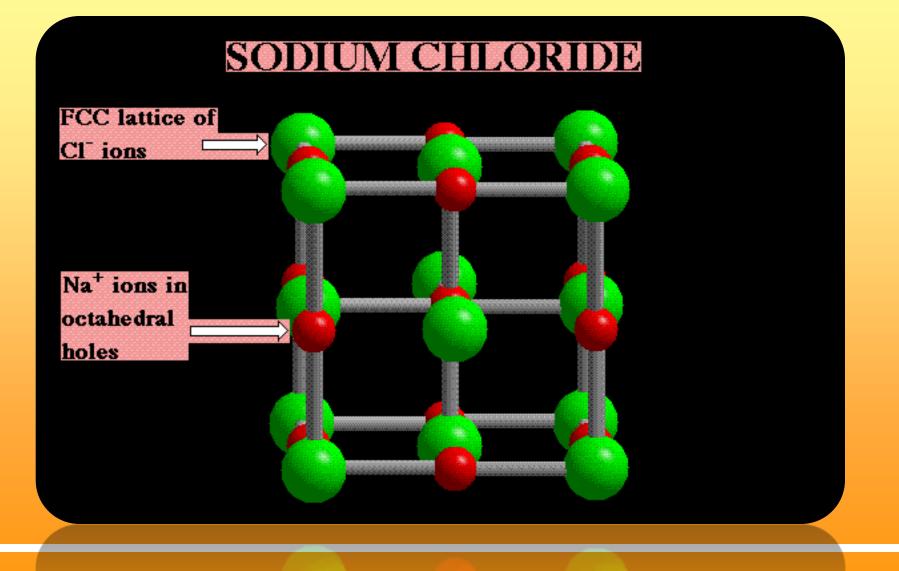
Simple Ionic Compounds

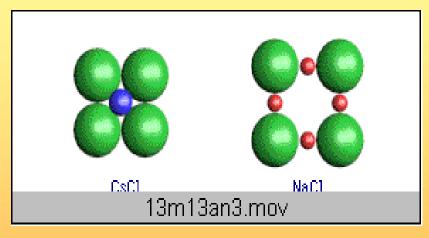
Salts with formula MX can have SC structure — but not salts with formula MX₂ or M₂X

Simple Ionic Compounds Many common salts have FCC arrangements of anions with cations in OCTAHEDRAL HOLES e.g., salts such as CA = NaCl • FCC lattice of anions ----> 4 A⁻/unit cell • C⁺ in octahedral holes ---> 1 C⁺ at center + [12 edges • 1/4 C⁺ per edge] = 4 C⁺ per unit cell

Construction of NaCl

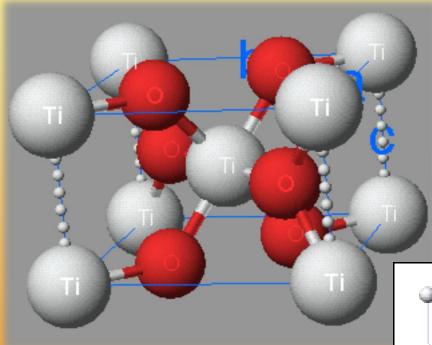
We begin with a cube of Cl⁻ ions. Add more Cl⁻ ions in the cube faces, and then add Na⁺ ion in the octahedral holes.


The Sodium Chloride Lattice

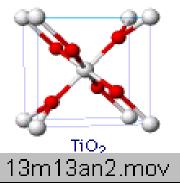

FCC of C11

Na⁺ ions are in OCTAHEDRAL holes in a facecentered cubic lattice of Cl⁻ ions.

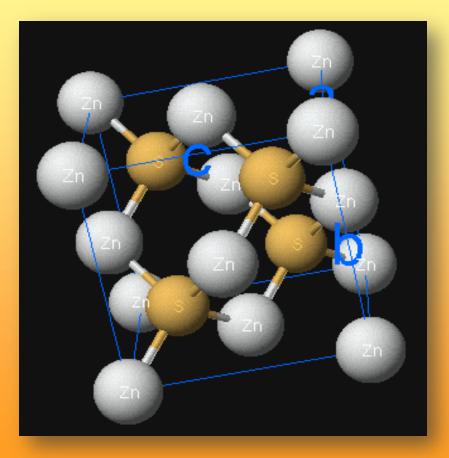
13m13an1.mov



Comparing NaCl and CsCl

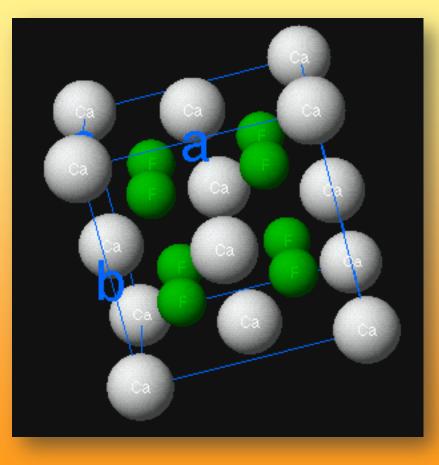


- Even though their formulas have one cation and one anion, the lattices of CsCl and NaCl are different.
- The different lattices arise from the fact that a Cs⁺ ion is much larger than a Na⁺ ion.


Common Ionic Solids

Titanium dioxide, TiO₂ There are 2 net Ti⁴⁺ ions and 4 net O²⁻ ions per unit cell.

Common Ionic Solids



Zinc sulfide, ZnS
 The S²⁻ ions are inTETRAHEDRAL holes in the Zn²⁺ FCC lattice.

This gives 4 net Zn²⁺ ions and 4 net S²⁻ ions.

Common Ionic Solids

ions.

Fluorite or CaF₂ FCC lattice of Ca²⁺ ions This gives 4 net Ca²⁺ ions. $> F^{-}$ ions in all 8 tetrahedral holes. This gives 8 net F⁻

Summary Ionic Solids

- Compounds with formula MX are commonly either sc or fcc
- Many salts have NaCl structure (fcc) especially alkali metals
- Exceptions are CsCl, CsBr, CsI, alkaline oxides and sulfides, and oxides of 4th row transition metals (MO)
- Formulas can always be found from unit cell structure

Thanks...