
    



    

 
   

Rigid Body:  
A rigid body is one for which the distance between 
any pair of points on the object remains fixed.  
 If an object changes its shape or size, then the 
distance between some pairs of point will change. 
Hence a rigid body retains its shape and size  under 
the application of forces. The concept of rigid body is 
an idealization. 

Translation and Rotation of a Rigid Body:  
In translational motion, all the particles in a rigid 
object have the same displacement in the same time 
interval. In rotational motion, all the particles in a 
rigid object execute circular motion about the axis of 
rotation.  



    

 
 
 

Static Equilibrium of a Rigid Body : 

  An extended object is in static equilibrium if every 
point of that object remains at rest .A rigid body is 
an object for which the distance between any pair of 
points on the object remains fixed. 

A rigid body in static equilibrium neither translates 
nor rotates and is , therefore, in translational and 
rotational equilibrium. 

Translational Equilibrium: 
As we know that the motion of the centre of mass is 
determined by the external forces, 
                            M acm = ∑ Fext   
Where M is mass of the object. 



    

The object is said to be translational equilibrium if 
the acceleration of centre of mass zero.  
Mathematically; If acm=0, then ∑ Fext =0  This is the 
condition for translational equilibrium. 

Rotational Equilibrium : 
For rotational equilibrium about any point ∑ext = 0 

must be satisfied. For coplanar forces , these 
conditions  reduce to 

∑Fx,ext = 0, ∑Fy,ext = 0,  ∑z,ext = 0 

Where the coplanar forces lie in the x-y  plane. 
These equations can be solved for up to three 
unknowns. 



    

The centre of mass of a body is a point where the entire 
mass of the body can be supposed to  be concentrated. 
Infact, nature of motion executed by the body shall remain 
unaffected if all the forces acting on the body were applied 
directly at this point. 
For a system of two particles of masses m1 and m2 having 
their position vectors as     and     respectively, with respect  
to origin of the coordinate system, the position vector of the 
centre of mass is given by 
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Centre of Mass : 

Centre of Gravity: 

The centre of gravity of an extended object is that point at 
which the full gravitational force on the object can be 
considered to act. The  centre of gravity and the centre of 
mass coincide for the objects of ordinary size close to earth 

surface.  
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Thus, the centre of mass of two equal masses lies 
exactly at the centre of the line joining the two 
masses. 
 
For a system of N-particles of masses m1, m2, m3… 
m4 having their position vectors as  , , ,...

1 2 3
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 respectively, with respect to the origin of the 

coordinate system, the position vector of the centre 
of mass is given by 
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 The coordinates of centre of mass are given by 

 



1 1

1

= =
CM

N N

i i i i

i= i=

N

i

i=

m x m x

X
M

m



    

 



1 1

1

= =
CM

N N

i i i i

i= i=

N

i

i=

m y m y

Y
M

m

 



1 1

1

= =
CM

N N

i i i i

i= i=

N

i

i=

m z m z

Z
M

m

 For a continuous distribution of mass, the 

coordinates of centre of mass are given by  
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 The position of the centre of mass of a system is 
independent of the choice of coordinate system.     

 

 The position of the centre of mass depends on the 
shape of the body and the distribution of its mass. 
Hence it may lie within or outside the material of the 
body.              

  
 In symmetrical bodies in which the distribution of 

mass is homogeneous, the centre of mass coincides 
with the centre of symmetry of geometrical centre. 

 
 The centre of mass changes its position only under 

the translatory motion but remains unchanged in 
rotatory motion. 



    

    Centre of mass of some well known rigid bodies are 
given below :    

• Centre of mass of a uniform rectangular, square or 
circular plate lies at its centre as shown in the figure. 

CM CM CM 

• Centre of mass of a uniform 
semicircular ring of radius R  
lies at a distance of           from 
its centre, on the axis of 
symmetry as shown in the 
figure. 
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• Centre of mass of a uniform 
semicircular disc of radius R 
lies at a distance of         from 
the centre on the axis of 
symmetry as shown in figure. 

 
 
 
 
• Centre of mass  hemispherical 

shell of radius R lies at a 
distance of       from its centre 
on the axis of symmetry as 
shown in figure. 
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• Centre of mass of a solid 
hemisphere of radius R lies at a 
distance of        from its centre 
on the axis of symmetry as 
shown in the figure 
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 Velocity of centre of mass is given by  
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 Acceleration of centre of mass is given by  
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 If total external force acting on the system is zero, 

then the total linear momentum of the system is 
conserved. Also , when the total external force acting 
on the system is zero, the velocity of centre of mass 
remains constant. 



    

 

Angular measurement:  
The SI unit angle, the rod, is defined as  = s/R, 
where s and R are measured with the same length 
unit.  
 
Angular coordinate, velocity, and acceleration:  
Angular kinematical quantities are the angular 
coordinate , 
the angular velocity component ωz = d/dt, 
the angular acceleration component z = dωz/dt.  
Note : The right-hand rule is used to define the 
positive sense for rotation. 
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Equations for uniformly accelerated angular motion 
are exactly analogous to those for uniformly 
accelerated linear motion. In usual notation we have : 



    

Kinematics of rotation about a fixed axis:  
 The kinematics of a rigid object rotating about a fixed axis is 
analogous to that of a particle moving in a straight line.  
 

Relations between angular and linear velocity and 
angular and linear acceleration:  
 For a particle in a rotating rigid object, the relation between 
the linear and angular velocity components are  

V = Rω 

The linear acceleration components are:  
 Transverse component of linear acceleration at = Rz   

 
 Radial component of linear acceleration aR = Rω2 (directed 

towards the centre)   



    

Rotational kinetic energy: moment of inertia: 
 The rotational kinetic energy of a rigid object is  

 Where the moment of inertia is  

Moment of inertia:  
 The moment of inertia of a continuous object is  

2=
1I
2

K


2

i i
I m R

I 
2

V

pR dV

 Theorem of perpendicular axis : The moment of 

inertia of a planar lamina about an axis perpendicular 
to its plane is equal to the sum of its moments of 
inertia about two perpendicular axes concurrent with 



    

 perpendicular axis and lying in the plane of the body. 
    Iz = Ix + Iy  
 where x and y are two perpendicular axes in the 

plane and z axis is perpendicular to its plane. 

Theorem of parallel axes : The moment of inertia of a 
body about any axis is equal to the sum of the 
moment of inertia of the body about a parallel axis 
passing through its centre of mass and the product of 
its mass and the square of the distance between the 
two parallel axes. 
   I = Icm + Md 2     
where Icm  is the moment of inertia of the body about 
an axis passing through the centre of mass and d is 
the perpendicular distance between two parallel axes. 



    

   
 Note : Use the definition of the moment of Inertia to 
develop expressions for moments of inertia; use the 
parallel-axis theorem.  
 
Rolling objects: 
 The axis of rotation of a rolling object uncle goes 
translation. 
 The kinetic energy of a rolling object can be written  

  
 
Note : Use rotational and translational quantities to      

describe the motion of a rolling object.  
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Angular momentum of a particle: 
The angular momentum     of a particle about a point 
O is       

l

 where r is measured relative to O and p = mv. From 
New-ton’s  second law, the relation between     and 
the net torque  

l

 r F 


ld

dt
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 Note :Determine the angular momentum of a particle 
traveling in a circle and of a particle traveling in a 
straight line; 

    Determine the rate of change of the angular momen-   
-tum of a particle from the net torque exerted on it.  

= ×l r p



    

Angular momentum of a system of particles: 
The total angular momentum of a system of particles is the 
vector sum of the angular moment of the particles that 
compose : 

i
L l

and  


ext

dL

dt

where           is the net external torque on the system.  

Note: 
Determine the total angular momentum of a system of 
particles; use Newton’s laws to show that internal torques 
do not contribute to the rate of change of the total angular 
momentum.   

 ext

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 Relative to any point on the axis, a torque’s axial component 
is   

t
z

RF
Note: 
Use the rotational analog of Newton’s second law to 
determine the rotational motion a rigid object rotating 
about a fixed axis. 

Rotational work and power for a rigid object:   
The work done by a torque on a rigid object rotating about a 
fixed axis is  
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Rotational dynamics of a rigid object about a fixed 
axis: 
 For the case of a rigid object rotating about a fixed axis, 



    

     Work done by the net torque changes the rotational 
kinetic energy:  

 2 21 1
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The power to a rotating rigid object is  

=
z z

P τ ω

Conservation of angular momentum : 
If the net external torque on a system is zero, the total 
angular momentum of the system is conserved:  

fiL L

 Note : Use the principle of conservation of angular momentum 
to determine rotational motion.  



    

Translation (one dimension) Rotation (fixed axis) 
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The following table summarizes the mathematical 
similarity between translational motion in one dimension 
and rotational motion about a fixed axis. 



    

  

Coordinate                          X 
Velocity component           vx 

Acceleration component   ax 

Mass                                    M 
Force component               Fx 

Momentum                         Px 

Coordinate                           
Velocity component          ωz 

Acceleration component   z 

Moment of inertia              I 
Torque component            z 

Momentum                         Lz 

For  translational  motion For rotational motion 

Note : The torque component z is positive if it tends to 
produce a counterclockwise rotation of the object when 
viewed from the positive z axis, and z is negative if the 
tendency of rotation is clockwise. 

Description of symbols used in above table:  



    

    Moment of inertia of different bodies: 
 
 
 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 

   Shape of body    Axis of rotation    Moment of inertia 

1.     Thin rod     Perpendicular to length        M l 2 / 12 

2.     Disc     Perpendicular to plane of disc       M r 2 /  2 

3.     Ring     Perpendicular to plane of ring       M r 2 

4.    Cylinder     Axis of cylinder        M r 2 / 2 

5.    Cylinder      Perpendicular to axis of 

cylinder 

    

 6.   Sphere      Diameter       2 M r2 / 5 

7.    Spherical shell      Diameter       2 M r 2 / 3 
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2 2l r
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Steps For Solving a Simple Static Problem 
 

 Sketch the situation showing the rigid body which is in 
static equilibrium. 

     
 Construct the free-body diagram by drawing in all 

external force vectors acting on the rigid body and 
indicate the magnitude, the direction, and the point of 
application of each force. Some of these quantities will 
be unknown; for example, you may not know the 
direction of a force or the point at which it is applied. 
 

 Select a set of coordinate axes along which to resolve the 
forces. Usually, a judicious choice of the orientation of 
the coordinate axes simplifies this resolution. 

      



    

 Apply the conditions of static equilibrium,. 
 

 Solve these equations for up to three unknowns. 
  
      One of the forces which acts on a rigid body close to 

the earth’s surface is the weight of the body. Its point 
of application in the examples to follow is assumed to 
be at the center of mass of the object. We shall discuss 
this assumption in the next section. 

 Make a choice of an axis about which to evaluate 
torques. Choosing the axis to pass through the 
intersection of the lines of action of two or more 
forces is often convenient because the moment arm 
of each of these forces is zero. 



    

     Example 1. 
  

      A uniform 48-N board of length 3.6m rests 
horizontally on two sawhorses, as shown in 
below figure (a).What normal forces are exerted 
on the board by the sawhorses ? 

  

 P 
cm Q 

2.4 m 
1.2 m 

(a) 



    

FQ 

1.8 m 
0.6 m 

Fe 

FP 

  

(b) 

Solution: 

Let us draw the free-body 
 diagram of the board.  

    Since the board is uniform, the weight is 
assumed to act at the center of mass, 1.8 m from 
each end of Figure (b) shows the free-body 
diagram for the board. The sawhorses exert 
vertical normal forces  of magnitude Fp and FQ on 
the board at points P and Q. These two normal 
forces are the unknowns.  

    



    

Since the board is in static equilibrium, we can 
apply the conditions of static equilibrium, . 

     Take the x axis as horizontal and they axis as 
vertically upward.  

       
Then        Fx,ext = 0    is automatically satisfied 

because all the forces act vertically.  
      
        Requiring       Fy,ext = 0, 
      we have          
                               Fp +FQ – Fe = 0,  
       or                       
                                Fp +FQ – Fe 



    

      

The sum of the two normal  forces must balance the 
weight. We must now select an axis about which to 
calculate torques. Any axis will do, but a convenient 
choice is the axis through point P because Fp exerts 
no torque, and FQ exerts a counterclockwise torque 
about the axis through P.  
With the z axis perpendicularly out of the slide,  
 
applying z,ext = 0  
Gives 
             (2.4 m) FQ – (1.8 m) Fe = 0,  
or          (2.4m)FQ = (1.8 m) (48 N) 
  
                  FQ = 36 N 



    

 

  The other normal force can be determined 
immediately since FP + FQ = 48 N,  

    or                            FP = 12 N.    (By putting the 
value of ) 

   
  Note: Try reworking this example for a different 

choice of axis, such as through point O. or 
through the center of mass. 



  

• Example 1 : A circular plate of uniform thickness has 
a diameter of 56cm. A circular portion of diameter 
42cm is removed from one edge of the plate as 
shown in the figure. Find the position of the centre of 
mass of the remaining portion. 

42cm 

56cm 

 Solution : Let distance of centre 
of mass from centre of bigger 
circle = r1   

     A1r1 = A2r2    
    where A = area = R 2  
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 Since the portion is cut off from right, centre of mass 

shifts to left. 
     Centre of mass of remaining portion is at 9cm to 

left, from centre of bigger circle. 
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• Example 2 : A physics professor is seated on a stool 
rotating about a vertical axis with an angular speed 
i . The professor’s arms are outstretched, and she is 
holding a dumbbell in each hand such that the 
moment of inertia of the system (professor, stool 
seat, and dumbbells) is Ii . She quickly pulls the 
dumbbells in to her sides so that the final moment of 
inertia of the system is one-third the initial: If = Ii/3  

  
    (a) What is her final angular speed? 
 (b) Compare the final and initial kinetic energies of 

the system. Neglect the torque due to friction in the 
stool’s axle during the time interval in which the 
system’s moment of inertia changes. 



  

 Solution : (a) Since the torque due to friction in the 
stool’s axle is negligible, there are no external 
torques on the system and its angular momentum is 
conserved : 

 
 Solving for f , we have  
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 Thus conservation of angular momentum requires 
that the angular speed increase by the same factor 
by which the moment of inertia decreases. 

 (b) The final kinetic energy of the system is  

 
 

   
 

21 2

2

1
3

2 3

i
f f f i

I
K I  



  

  
1 2

2
3 3

f f i
I K

 Thus conservation of angular momentum requires 
that the kinetic energy of the system increase by the 
same factor by which the moment of inertia 
decreases.  

     
    Think About It! 
    Where did this additional kinetic energy come? 



    


