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 Topic covered in this lecture are: 
 
 Ampere’s Law 
 

 Magnetic Field Inside and Outside a Long Straight Wire with 
Current  using Ampere’s Law 

 

 Solenoids 
 

 Toroids 
 

 Force Between Two Parallel Currents 
 

 Torque on a Current Loop 
 

 Magnetic Dipole Moment 
 

 Current-Carrying Coils 
 

 B on Axis of Current-Carrying Coil 
 

 Moving Coil Galvanometer 



    

 Ampere’s Law for magnetic fields is analogous to 
Gauss’ Law for electric fields. 

 

 Draw an “amperian loop” around a system of currents 
(like the two wires at right).  The loop can be any 
shape, but it must be closed. 
 
 
 

 The value of this integral is proportional to the current 
enclosed: 

 

i1 i2 

0 encB ds i 
r r

Ñ

Ampere’s Law 

Ampere’s Law 

r
B Add up the component of    along the loop, for each 

element of length ds around this closed loop. 



    

 We already used the Biot-Savart Law to 
show that, for this case,                

 

 Let’s show it again, using Ampere’s Law: 

 

 First, we are free to draw an Amperian loop 
of any shape, but since we know that the 
magnetic field goes in circles around a wire, 
let’s choose a circular loop (of radius r). 

 

 Then B and ds are parallel, and B is constant 
on the loop, so  

 

 And solving for B gives our earlier 
expression. 

Ampere’s Law 


r r
Ñ 0 encB×ds = B2πr = μ i

0μ i
B =

2πr

0μ i
B =

2πr

0 encB ds i 
r r

Ñ

Magnetic Field Outside a Long Straight Wire with Current 



    

Magnetic Field Inside a Long Straight Wire with 
Current 

 Now we can even calculate B inside the wire. 

 Because the current is evenly distributed over 
the cross-section of the wire, it must be 
cylindrically symmetric. 

 So we again draw a circular Amperian loop 
around the axis, of radius r < R. 

 The enclosed current is less than the total 
current, because some is outside the 
Amperian loop.  The amount enclosed is 

 

r R 

~1/r 
~r 

B 

2

enc 2

πr
i = i

πR

inside a straight wire 


r r
Ñ

2

0 enc 0 2

r
B×ds = B2πr = μ i = μ i

R
 
 
 

0

2

μ i
B = r

2πR

 so 

Note : Do it yourself for the outside of the wire. 



    

1.    Rank the paths according to the value of       
taken in the directions shown, most positive first. 

 
 

I. 

II. 

III. 

IV. 

V. 

  sdB


Fun With Amperian Loops 

A. I, II, III, IV, V. 
B. II, III, IV, I, V. 
C. III, V, IV, II, I. 
D. IV, V, III, II, I. 
E. I, II, III, V, IV. 

Think About it! 



    

 We saw earlier that a complete loop 
of wire has a magnetic field at its 
center: 

 

 

  We can make the field stronger by 
simply adding more loops.  A many 
turn coil of wire with current is called 
a solenoid. 

 

 We can use Ampere’s Law to calculate 
B inside the solenoid. 

 The field near the wires is still 
circular, but farther away the fields 
blend into a nearly constant field 
down the axis. 

0μ i
B =

2R

Solenoids 



    

 The actual field looks more like this: 

 Approximate that the field is constant inside 
and zero outside (just like capacitor). 

   Characterize the windings in terms of 
number of turns per unit length, n.  Each 
turn carries current i, so total current over 
length h is inh. 

 Compare with electric field in a capacitor. 
 

 Like a capacitor, the field is uniform inside 
(except near the ends), but the direction of the 
field is different. 


r r
Ñ 0 enc 0B×ds = Bh = μ i = μ inh

only section that has non-zero 
contribution 

0B = μ in

Solenoids 

Note : At point near its end the magnetic field is given by 
    

0μ in
B =

2



    

 Notice that the field of the solenoid sticks out 
both ends, and spreads apart (weakens) at the 
ends. 

 

 We can wrap our coil around like a doughnut, 
so that it has no ends.  This is called a toroid. 

 

 Now the field has no ends, but wraps 
uniformly around in a circle. 


r r
Ñ 0 enc 0B×ds = B2πr = μ i = μ iN

inside toroid 
0

2  

iN
B

r






Toroids 

 What is B inside?  We draw an Amperian loop 
parallel to the field, with radius r.  If the coil 
has a total of N turns, then the Amperian loop 
encloses current Ni. 



    

2. The magnetic field inside a Toroid is                .  Using an 
Amperian loop, what is the expression for the magnetic field 
outside?  

B  Outside a Toroid 

0μ iN
B =

2π r

A. Zero 
B. The same, decreasing as 1/r. 
C. The same, except decreasing 

as  
         1/r2. 
D. The same, except increase as 

r. 
E. Cannot determine. 

Do it yourself ! 



    

3.  The three loops below have the same current.  
Rank them in terms of magnitude of magnetic field 
at the point shown, greatest first. 

 

I.                 II.                  III. 

Magnetic Field from Loops 

A. I, II, III. 
B. II, I, III. 
C. III, I, II. 
D. III, II, I. 
E. II, III, I. 

Think about it! 



    

 Recall that a wire carrying a current in a 
magnetic field feels a force. 

 

 When there are two parallel wires carrying 
current, the magnetic field from one causes a 
force on the other. 

 

 When the currents are parallel, the two wires 
are pulled together. 

 

 When the currents are anti-parallel, the two 
wires are forced apart. 

Force Between Two Parallel Currents 

To calculate the force on b due to a, 
r r r

ba b aF = i L×B

0 aμ i
=

2π d

Force between two parallel currents 

0μ i
B =

2πR

0 a b
ba

μ i i L
F =

2πd

F F 

r r r

BF = iL×B



    

4. Which of the four situations below has the 
greatest force to the right on the central 
conductor? 

 

I. 

II. 

III. 

IV. 

F greatest? 

Forces on Parallel Currents 

A. I. 
B. II. 
C. III. 
D. IV. 
E. Cannot  
      determine. 



    

Torque on a Current Loop 

 Loop rotates. Calculate force for each 
side of the loop: 

 

 

 Torque: 

 

 

 

 

 

2 4F = F = iaB

o

1 3F =F = ibBsin(90 - θ)= ibBsinθ

 Maximum torque 

 Sinusoidal variation  

 Stable when n parallels B. 

 Restoring torque: oscillations. 

max = iAB

max( )  sin 

2 4

b b
= F sinθ +F sinθ

2 2

b b
= iaB( sinθ)+iaB( sinθ)

2 2

= iabBsinθ = iABsinθ



→ →

= i A×B






    

The Magnetic Dipole Moment 

 Magnetic dipole moment 

 

 SI unit:  Am2, Nm/T = J/T 

 A coil of wire has N loops of the same area: 

 

 Torque 

 

 Magnetic potential 

 Electric dipole and magnetic dipole 

→ →

μ = Ni Acoil

B


 

Electric Dipole Magnetic Dipole 

Moment 

Torque 

Potential Energy 

p = qd
→ →

U = -μ×B

μ = NiA





→ →

p×E




→ →

μ×B

→ →

U = -p×E

B


Small bar 
magnet 

5 J/T 

Earth 8.0×1022 
J/T 

Proton  1.4×10-26 
J/T 

Electron 9.3×10-24 
J/T 

→ →

μ = i A





→ →

μ×B
→ →

U = -μ×B



    

Current-Carrying Coils 

 A current-carrying coil of wire acts like a small 
magnet, and we defined the “dipole moment” (a 
vector) as 

r
μ = NiA N is number of turns, 

A is area of loop 

 We are able to calculate the field in the center of such a loop, 
but what about other places.  In general, it is hard to calculate 
in places where the symmetry is broken. 

 

 But what about along the z axis? 

 The direction is given by the right-hand rule. Let your fingers 
curl around the loop in the direction of i, and your thumb 
points in the direction of B. Notice that the field lines of the 
loop look just like they would if the loop were replaced by a 
magnet. 



    

B on Axis of Current-Carrying Coil 

 What is B at a point P on the z axis of the current 
loop? 

 We use the Biot-Savart Law  
 

 to integrate around the current loop, noting that 
the field is perpendicular to r.   

 By symmetry, the perpendicular part of B is 
going to cancel around the loop, and only the 
parallel part will survive.  

 
d 0

|| 2

μ i ds
B = dBcosα = cosα

4π r

r

R
cos

22 zRr 

0

2 2 3/2

μ i ds
= R

4π(R + z )

 
0

|| 2 2 3/2

μ iR 
B = dB = ds

4π(R + z )

r rr
dB 0

3

μ i ds× r
=

4π r

2

0

2 2 3/2

μ iR  
B(z)=

2(R + z )

0  
(0)

2

i
B

R






    

Moving Coil or Suspended Coil or D’ Arsonval Type 
Galvanometer : 

  

 = N I A B sin  

 Restoring torque in the 
    coil is  = k  (where k is 

restoring torque per unit 
angular twist,  is the 
angular twist in the wire) 

  At equilibrium, 
            N I A B sin= k 
so   

  

Note : The factor sin  can be  eliminated by choos in Radial 
Magnetic Field. 

 

 Torque experienced by the coil is 

H- Torsion head, S’ – Terminal screw,   
M- Mirror, N,S-pole -pieces of a  
magnet, PQRS-Rectangular coil,   

K
I = α

NABsinφ



    

Radial Magnetic Field: 
 The (top view PS of) plane of the coil PQRS lies 

     along the magnetic lines of force in whichever 

     position the coil comes to rest in equilibrium. 

 

  So ,The angle between the plane of the coil  
     and the magnetic field is 0°. 
          or 
  The angle between the normal to the plane of 
     the coil and the magnetic field is 90°. 

i.e. sin  = sin 90°= 1 

                            is called Galvanometer constant 

  I or





K
    I =

NAB

Gα



Where  
K

G =
NAB



    

 Current Sensitivity of Galvanometer: 
      

       It is the defection of galvanometer per unit current. 

        

        

       

 Voltage Sensitivity of Galvanometer: 
 

       It is the defection of galvanometer per unit voltage. 

α NAB
=

I K

α NAB
=

V KR



    

 Example 1.:  A long straight solid conductor of 
radius 5 cm carries a current of 2 A, which is 
uniformly distributed over its circular cross-section. 
Find the magnetic field induction at a distance of 3 
cm from the axis of the conductor. 

 

 Sol.   As the observation point lies inside the solid 
conductor, the magnetic field produced at the 
observation point is not due to the total current, 
which passes through the conductor. To find the 
magnetic field at a point P at distance r (= 3 cm) 
due to the current carrying conductor, imagine a 
circular path of radius r around the conductor, 



    

 such that point P lies on it. If R is the radius of the 
solid conductor, then current enclosed by the 
circular path, 

 
 
 
 Let B be magnetic field at point P due to the current 

carrying conductor. The magnetic field B acts 
tangential to the circular path and its magnitude is 
same at every point on it.  

  Therefore, according to Ampere’s circular law, 

2
2

2 2

I Ir
I' = × πr =

πR R

0B. d  I'l 
ur r

Ñ 2

0 2

Ir
or                         B×2 π r = μ

R



    

  
 
  
 Here, I = 2 A, r = 3 cm = 0.03 m m and R = 5 cm = 

0.05 m 
 
 
 
 Note. As the point lies inside the conductor, the 

magnetic field produced will be r times  the value 
obtained above, where r is permeability of the 
material of the conductor.  

 
 

0 0

2 2

μ μIr 2Ir
or           B = . .

2π R 4π R

-7
-6

2

10 ×2×2×0.03
∴         B = = 4.8 × 10 T

(0.05)



    

 Example 2.:  A 0.5 m long solenoid has 500 turns 
and has a flux density of 2.52  10-3 T at its centre. 
Find the current in the solenoid.  

     Given, 0 = 4   10-7 H m-1. 
 

 Sol.   Here, B = 2.52  10-3 T ;  0 =  4   10-7 H m-1 

      Length of the solenoid, L= 0.5 m ; 
      total number number of turns in the solenoid, 

     N = 500 
      Therefore, number of turns per unit length of 

     the solenoid, 
 
 

      
       If I is the current through the solenoid, then 

-1N 500
n = = = 1,000 m

L 0.5



    

   B = 0 n I 
-3

-7

0

B 2.52×10
or   = = = 2.0 A

μ  n 4π ×10 × 1,000


 Example 3.:  A toroid has a core (non-ferromagnetic) 
of inner radius 25 cm and outer radius 26 cm, 
around which 3,500 turns of a wire are wound. If 
the current in the wire is 11 A, what is the magnetic 
field (a) outside the toroid (b) inside the core of the 
toroid (c) in the empty space surrounded by the 
toroid ? 

 

 Sol.   Here, I = 11 A; total number of turns = 3,500 
      Mean radius of toroid, 



    

  
 
  
 Total length (circumference) of the toroid 
   = 2  r = 2   25.5  10-2 = 51  10-2 m 
 Therefore, number of turns per unit length, 
 
 
 
(a)The field is non-zero only inside the core surrounded by 

the windings of the toroid. Therefore, the field outside 
the toroid is zero. 
 

(b)The field inside the core of the toroid, 

-225 + 26
r = = 25.5 cm = 25.5 × 10  m

2

-2

3,500
n = 

51π ×10

-7

0 -2

3,500
B = μ  n I = 4π ×10 × ×11

51π ×10
= 3.02  10-2 T 



    

  
(c) For the reason given in (a), the field in the empty  space 

surrounded by the toroid is also zero. 

 Example 4.:  Two long straight parallel wires are 2 m 
apart (perpendicular to the plane of the paper) as 
shown  in Fig 1. The wire A carries current  of 9.6 A 
directed into the plane of the paper. The wire B 
carries a current, such that the magnetic field of 
induction at the point P at a distance 10/11 m from 
the wire B is zero. Find 

 
(i) the magnitude and direction of the current in B. 



    

(ii) the magnitude of the magnetic field of induction at the point 
S. 

 
(iii) the force per unit length on the wire B. 
 

Fig. 1 

 

 

2m 

A 9.6 A 

1.6 m 

1.2 m 

B 

P 

S 

2B
ur

1B
ur

10
m

11



    

Sol. Here, current through the wire A, 
   I1 = 9.6 A     (directed into the paper) 
 The distance of point P from the wire A,  
 
 
  
 and the distance of point P from the wire B, 
 
 

(i) Suppose that I2 is the current through the wire B, so 
that the magnetic field induction at the point P due to 
the two wires becomes zero. For this, current in the 
wire B has to be directed outwards of the paper, so that 
the magnetic fields produced at the point P due to the 
two wires are equal in magnitude and opposite in 
direction. 

1

10 32
a = 2 + = m

11 11

2

10
a = m

11



    

 Thus, for the magnetic field induction at the point P to 
be zero, 

 
 
 
 
 
 
    = 3 A (directed outwards of the paper) 
 
 

(ii) In fact, the points A, B and S form a right angled 
triangle. It is because, AB2 = AS2 + BS2. 

 Therefore, the magnetic field induction at the point S 
due to the wire A, 

 

. .
4 4

0 01 2

1 2

μ μ2I 2I

π a π a

2
2 1

1

a 9.6 ×10/11
or        I = I × =

a 32/11

. 12
4

 1B = T
-7

-70 1μ 2I 10 × 2 × 9.6
×10

π A S 1.6

 (along perpendicular to AS 

   i.e, along SB) 



    

                 
 The magnetic field induction at the point S due to the wire B, 
 

 
 

    (along perpendicular to BS i.e, along SA) 

  
     As the two fields B1 and B2 are linclined at 90, the resultant 

magnetic field at the point S is given by 

 
 
   = 13  10-7 T 

(iii) The force per unit length on the wire B, 
 
 
 
   =   2.88  10-6 N m-1 (repulsive) 

.
4

2B = T
-7

-70 2μ 2I 10 × 2 × 3
= 5×10

π B S 1.2

2 2 -7 2 -7 2

1 2B = B  + B = (12 × 10 )+(5 × 10 )

 
.

4


-7

0 1 2μ 2I I 10 × 2 × 9.6 × 3
F =  

π A B 2



    


