ORGANIC COMPOUNDS CONTAINING OXYGEN - III

Objectives

- Properties of phenols
- Reaction of phenols
- Preparation of ethers
- Properties and reactions of ethers
- Some useful ethers
- Crown ethers

Acidity of phenol

Phenol is more acidic than aliphatic alcohols because conjugate base is stabilized by resonance.

Reactions of phenol

Electrophilic aromatic substitution

-OH group is ortho, para- directing group and activates the benzene rings.

Chemical reaction of phenol

Fries rearrangement

Distillation with Zn dust : $C_6H_5OH f C_6H_6 + ZnO$

Nitration

With dilute HNO₃, it gives ortho and para-isomers which can be separated easily by distillation.

With concentrated HNO₃ phenol is converted to 2,4,6-trinitrophenol.

Kolbe's reaction

Reimer-Tiemann Reaction Mechanism

Ť

Reimer Tiemann Reaction

On treating phenol with chloroform in presence of sodium hydroxide, a —CHO group is introduced at ortho position of benzene ring.

The mechanism involves dichlorocarbene as an intermediate

 $OH^- + CHCl_3 f H_2O + :CCl_3 \longrightarrow Cl^- + :CCl_2$

Fries rearrangement

Esters of phenols yield phenolic ketones on treatment with anhydrous aluminium chloride.

Coupling Reaction

p-hydroxy azo benzene

Phenol Reactions: A Summary

Ethers

Introduction

CH₃—O—CH₃

- Formula R-O-R where R is alkyl or aryl.
- Symmetrical or unsymmetrical
- Examples:

Structure and Polarity

- Bent molecular geometry
- Oxygen is *sp*³ hybridized
- Tetrahedral angle

Hydrogen Bond Acceptor

Ethers cannot H-bond to each other.

In the presence of -OH or -NH (donor), the lone pair of electrons from ether forms a hydrogen bond with the -OH or -NH.

Solvent properties

- Nonpolar solutes dissolve better in ether than in alcohol.
- Ether has large dipole moment, so polar solutes <u>also</u> dissolve.
- Ethers solvate cations.
- Ethers do not react with strong bases.

Ether complexes

• Grignard reagents

• Electrophiles

 $BH_3 \cdot THF$

• Crown ethers

Nomenclature

Common name

- Alkyl alkyl ether
- Current rule: alphabetical order
- Old rule: order of increasing complexity
- Symmetrical: use dialkyl, or just alkyl.
- Examples:

```
CH<sub>3</sub>CH<sub>2</sub>—O—CH<sub>2</sub>CH<sub>3</sub>
```

diethyl ether or ethyl ether CH₃ CH₃—O—C—CH₃ CH₃ *t*-butyl methyl ether or methyl *t*-butyl ether =>

IUPAC Names

- Alkoxy alkane
- Examples:

CH₃ CH₃—O—C—CH₃ | CH₃

2-methyl-2methoxypropane

Methoxycyclohexane

Preparation

By dehyration of alcohols

CH₃CH₂OH

 $\begin{array}{c} H_2SO_4 \rightarrow C_2H_5OC_2H_5 \\ 410 \text{ K} \end{array}$

Williamson's Process

Important laboratory method for the preparation of symmetrical and unsymmetrical ethers.

ROH + Na
$$\longrightarrow$$
 RO⁻Na⁺ + $\frac{1}{2}$ H₂
RO⁻ + R[·] - X⁻ \longrightarrow R - O - R[·] + X⁻
 \int S_N^2 R - O - R[·] + X⁻

But $RX \rightarrow Must be 1^{0}$. $2^{0} and 3^{0} RX \rightarrow Alkene will be the major$ product

tertiary alkyl halide is used, an alkene is the only reaction product and no ether is formed. CH₃ | | | | | CH₃ (Minor)

(Major)

$$C_{2}H_{5}O^{-}Na^{+} + H_{3}C_{-}C_{-}Br \xrightarrow{Path 2} H_{3}C_{-}C_{-}OC_{2}H_{3}$$

$$H_{3}C_{-}C_{-}OC_{2}H_{3}$$

Cleavage of Ethers

- Ethers are unreactive toward base, but protonated ethers can undergo substitution reactions with strong acids.
- Alcohol leaving group is replaced by a halide.
- Reactivity: HI > HBr >> HCl
 Mechanism

Phenyl Ether Cleavage

Alkyl aryl ethers are cleaved at the alkyl oxygen bond due to the low reactivity of aryl-oxygen bond.

- Phenol cannot react further to become halide.
- Example:

Electrophilic substitution in alkyl aryl ethers

The alkoxy group(-OR) is ortho, para directing and activate the aromatic ring towards electrophilic substitution in the same way as phenol.

Helogenation

Anisole undergoes bromination with bromine in ethanoic acid even in absence of iron(III) bromide catalyst.

Nitration

Obtained mixture of ortho and para isomers.

Illustrative Example

Give the major products that are formed by heating each of the following ethers with HI.

Solution

(i) $CH_3 = CH_2 - CH_2 - CH_2 OH + CH_3 CH_2$

(ii) $CH_3CH_2CH_2OH + CH_3CH_2-C-I$ CH_3 $CH_3CH_2CH_2OH + CH_3CH_2-C-I$ $CH_3CH_2CH_2OH + CH_3CH_2-C-I$

Crown ethers

Cyclic polyethers containing four or more ether linkages in a ring of twelve or more atoms.

Crown ethers bind certain metal ions depending on size of the cavity

Inclusion compound

In this reaction crown ether is host and metal ion is guest. Crown ethers allow inorganic salts to dissolve in non-polar solvents.

Uses of ethers

As solvent and inhalation anaesthetic.

A number of naturally occurring phenol and ethers are used as flavourings and in perfumes of their pleasant odour.

