Basic Concepts In Chemistry

How Many Cookies Can I Make?

You can make cookies until you run out of one of the ingredients

Once this family runs out of sugar, they will stop making cookies (at least any cookies you would want to eat)

How Many Cookies Can I Make?

> In this example the sugar would be the limiting reactant, because it will limit the amount of cookies you can make

Limiting Reactants

The limiting reactant is the reactant present in the smallest stoichiometric amount

Reactions Involving a LIMITING REACTANT

- In a given reaction, there is not enough of one reagent to use up the other reagent completely.
- The reagent in short supply LIMITS the quantity of product that can be formed.

Limiting reactant = _____ Excess reactant = _____

Limiting Reactants In other words, it's the reactant you'll run out of first (in this case, the H₂)

Before reaction

 10 H_2 and 7 O_2

After reaction

 $10 \text{ H}_2\text{O}$ and 2 O_2

Limiting Reactants In the example below, the O₂ would be the excess reagent

Before reaction

 $10~\mathrm{H_2}$ and 7 $\mathrm{O_2}$

After reaction

10 H₂O and 2 O₂

React solid Zn with 0.100 mol HCl (aq)

Zn + 2 HCl ---> $ZnCl_2 + H_2$

Rxn 1Rxn 2Rxn 3mass Zn (g)7.003.271.31

React solid Zn with 0.100 mol HCl (aq)

Zn + 2 HCl ---> $ZnCl_2 + H_2$

	Rxn 1	Rxn 2	Rxn 3
mass Zn (g)	7.00	3.27	1.31
mol Zn	0.107	0.050	0.020
mol HCl	0.100	0.100	0.100
mol HCI/mol Zn	0.93	2.00	5.00

Reaction to be Studied 2 AI + 3 Cl₂ ---> Al₂Cl₆

Step 1 of LR problem: compare actual mole ratio of reactants to the oretical mole ratio

Step 1 of LR problem: compare actual mole ratio of reactants to theoretical mole ratio.

$2 AI + 3 CI_2 ---> AI_2 CI_6$

Reactants must be in the mole ratio

$$\frac{\text{mol Cl}_2}{\text{mol Al}} > \frac{3}{2}$$

Deciding on the Limiting Reactant

 $2 \text{ AI} + 3 \text{ Cl}_2 \implies \text{Al}_2 \text{Cl}_6$ $\frac{\text{mol } \text{Cl}_2}{\text{mol } \text{AI}} > \frac{3}{2}$

then there is not enough Al to use up all the Cl₂, and the limiting reagent is Al

Step 2 of LR problem: Calculate moles of each reactant

We have 5.40 g of Al and 8.10 g of Cl ₂

5.40 g Al =
$$\frac{1 \text{ mol}}{27.0 \text{ g}}$$
 = 0.200 mol Al
8.10 g Cl₂ = $\frac{1 \text{ mol}}{70.9 \text{ g}}$ = 0.114 mol Cl₂

Find mole ratio of reactants

 $\frac{2 \text{ AI} + 3 \text{ CI}_2 - --> \text{ AI}_2 \text{ CI}_6}{\frac{\text{mol CI}_2}{\text{mol AI}}} = \frac{0.114 \text{ mol}}{0.200 \text{ mol}} = 0.57$

This

should be 3/2 or 1.5/1 if reactants are present in the exact stoichiometric ratio. Limiting reagent is Cl₂

Mix 5.40 g of Al with 8.10 g of Cl $_2$. What mass of Al $_2$ Cl $_6$ can form? 2 Al + 3 Cl $_2$ ---> Al $_2$ Cl $_6$

Limiting reactant = Cl $_2$ Base all calcs. on Cl $_2$

CALCULATIONS: calculate mass of Al₂Cl₆ expected.

Step 1: Calculate moles of Al ₂Cl₆ expected based on LR.

 $mol Cl_{2} = \frac{1 mol Al_{2}Cl_{6}}{3 mol Cl_{2}} = 0.0380 mol Al_{2}Cl_{6}$ Step 2: Calculate mass of Al ₂Cl₆ expected based on LR.

mol
$$Al_2Cl_6 = \frac{266.4 \text{ g } Al_2Cl_6}{\text{mol}} = 10.1 \text{ g } Al_2Cl_6$$

How much of which reactant will remain when reaction is complete?

 Cl₂ was the limiting reactant. Therefore, AI was present in excess. But how much?

- First find how much AI was required.
- Then find how much Al is in excess.

Calculating Excess Al $2 \text{ Al} + 3 \text{ Cl}_2 \rightarrow \text{products}$ $\sqrt[n]{}$ 0.200 mol 0.114 mol = LR

 $mol Cl_2 = \frac{2 mol Al}{3 mol Cl_2} = 0.0760 mol Al req'd$

Excess Al = Al available - Al required = 0.200 mol - 0.0760 mol = 0.124 mol Al in excess

Thanks...