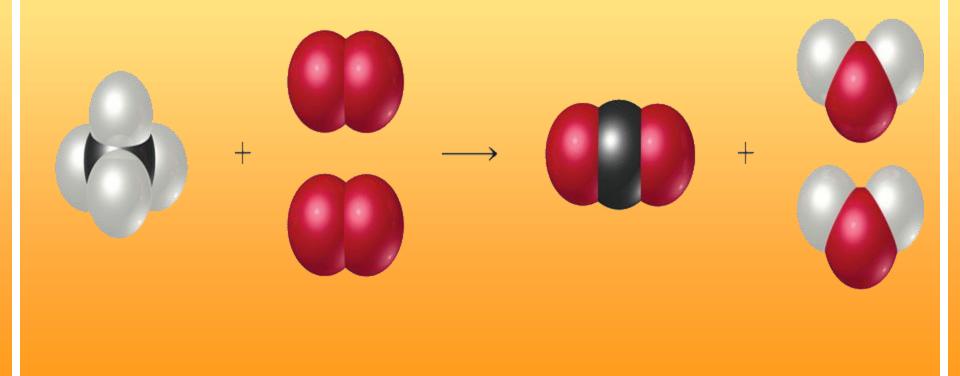
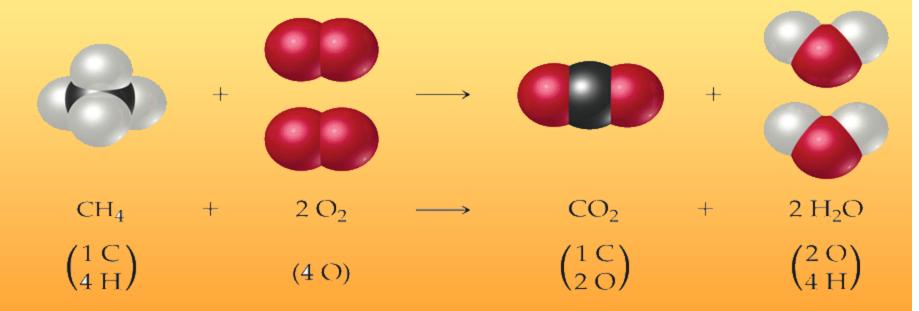

Basic Concepts of chemistry

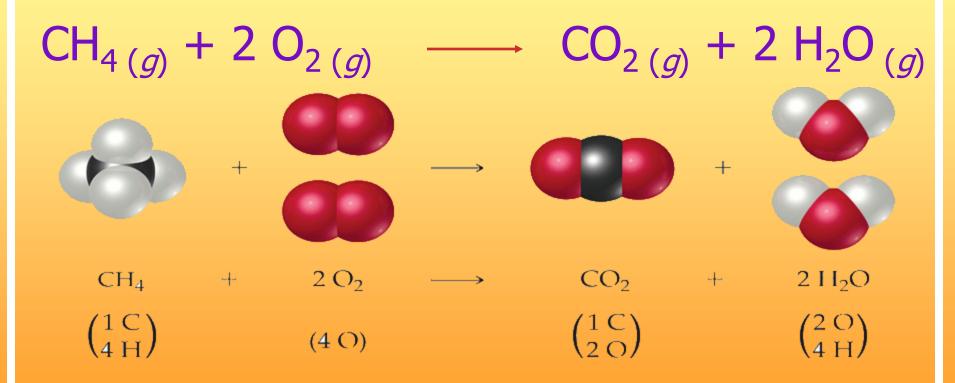
Stoichiometry: Calculations with Chemical Formulas and Equations


Law of Conservation of Mass


"We may lay it down as an incontestable axiom that, in all the operations of art and nature, nothing is created; an equal amount of matter exists both before and after the experiment. Upon this principle, the whole art of performing chemical experiments depends." --Antoine Lavoisier, 1789

Chemical Equations

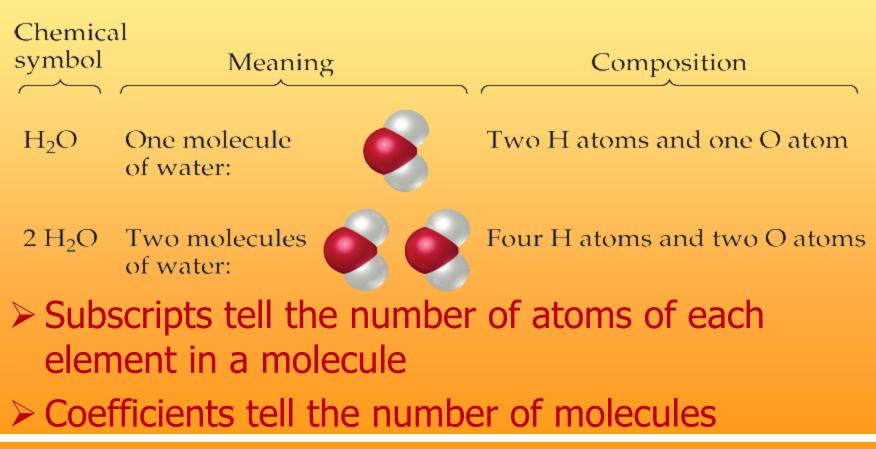
Concise representations of chemical reactions



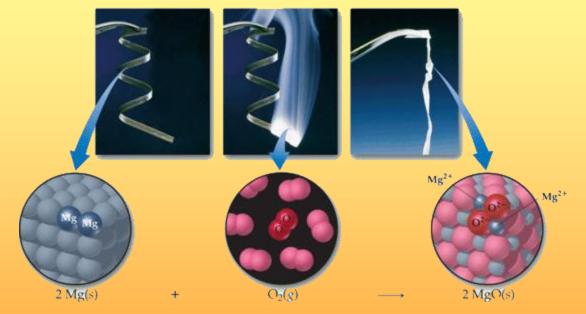
Anatomy of a Chemical Equation $CH_{4(g)} + 2 O_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2O_{(g)}$

The states of the reactants and products are written in parentheses to the right of each compound.

Anatomy of a Chemical Equation


Coefficients are inserted to balance the equation

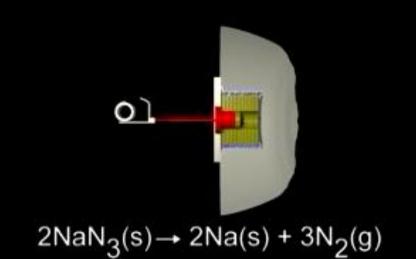
Subscripts and Coefficients Give Different Information


Chemical
symbolMeaningCompositionH2OOne molecule
of water:Two H atoms and one O atom2 H2OTwo molecules
of water:Four H atoms and two O atoms

Subscripts tell the number of atoms of each element in a molecule

Subscripts and Coefficients Give Different Information

Combination Reactions



Two or more substances react to form one product

Examples:

 $N_{2(g)} + 3 H_{2(g)} \longrightarrow 2 NH_{3(g)}$ $C_{3}H_{6(g)} + Br_{2(l)} \longrightarrow C_{3}H_{6}Br_{2(l)}$ $2 Mg_{(s)} + O_{2(g)} \longrightarrow 2 MgO_{(s)}$

Decomposition Reactions

One substance breaks down into two or more substances

Examples:

 $\begin{array}{ccc} \text{CaCO}_{3\,(s)} & \longrightarrow & \text{CaO}_{\,(s)} + \text{CO}_{2\,(g)} \\ 2 \text{ KClO}_{3\,(s)} & \longrightarrow & 2 \text{ KCl}_{\,(s)} + \text{O}_{2\,(g)} \\ 2 \text{ NaN}_{3\,(s)} & \longrightarrow & 2 \text{ Na}_{\,(s)} + 3 \text{ N}_{2\,(g)} \end{array}$

Combustion Reactions

 Rapid reactions that produce a flame
Most often involve hydrocarbons reacting with oxygen in the air

Examples:

 $CH_{4(g)} + 2 O_{2(g)} \longrightarrow CO_{2(g)} + 2 H_2O_{(g)}$ $C_3H_{8(g)} + 5 O_{2(g)} \longrightarrow 3 CO_{2(g)} + 4 H_2O_{(g)}$

Formula Weight (FW)

Sum of the atomic weights for the atoms in a chemical formula

So, the formula weight of calcium chloride, CaCl₂, would be

Ca: 1(40.1 amu)

<u>+ Cl: 2(35.5 amu)</u>

111.1 amu

These are generally reported for ionic compounds

Molecular Weight (MW)

Sum of the atomic weights of the atoms in a molecule For the molecule ethane, C₂H₆, the molecular weight would be

> C: 2(12.0 amu) + H: 6(1.0 amu) 30.0 amu

Percent Composition

One can find the percentage of the mass of a compound that comes from each of the elements in the compound by using this equation:

% element = (number of atoms)(atomic weight) (FW of the compound) x 100

Percent Composition

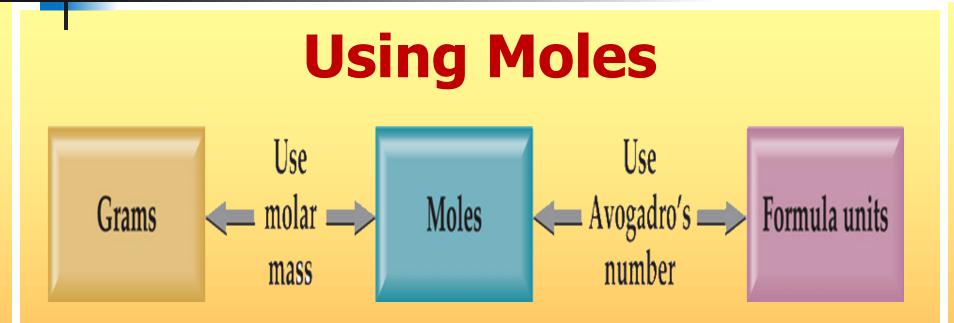
So the percentage of carbon in ethane is...

 $\%C = \frac{(2)(12.0 \text{ amu})}{(30.0 \text{ amu})}$ $= \frac{24.0 \text{ amu}}{30.0 \text{ amu}} \times 100$ = 80.0%

Avogadro's Number

6.02 x 10²³ 1 mole of ¹²C has a mass of 12 g

Laboratory-size


Molar Mass

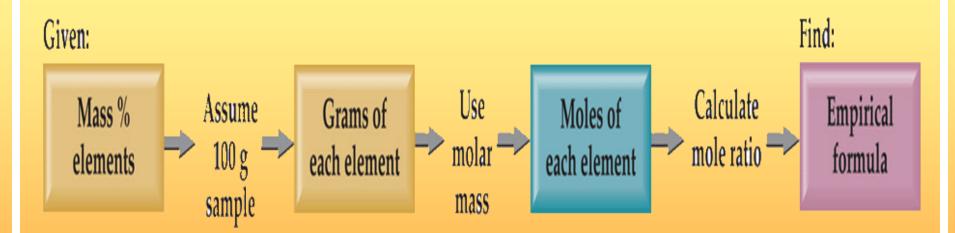
By definition,

These are the mass of 1 mol of a substance (i.e., g/mol)

The molar mass of an element is the mass number for the element that we find on the periodic table

The formula weight (in amu's) will be the same number as the molar mass (in g/mol)

Moles provide a bridge from the molecular scale to the real-world scale


Mole Relationships

Name of substance	Formula	Formula Weight (amu)	Molar Mass (g/mol)	Number and Kind of Particles in One Mole
Atomic nitrogen	N	14.0	14.0	$6.022 \times 10^{23} \mathrm{N}$ atoms
Molecular nitrogen	N_2	28.0	28,0	$\int -6.022 \times 10^{23} \text{ N}_2 \text{ molecules}$
				$2(6.022 \times 10^{23})$ N atoms
Silver	Ag	107.9	107.9	6.022×10^{23} Ag atoms
Silver ions	Agi	107.9 ^a	107.9	$6.022 \times 10^{23} \mathrm{Ag}^+$ ions
				$\left[-6.022 \times 10^{23} \operatorname{BaCl}_2 \operatorname{units}\right]$
Barium chloride	BaCl ₂	208.2	208.2	$\{-6.022 \times 10^{23} \text{Ba}^{2+} \text{ ions} \}$
				$(2(6.022 \times 10^{23}) \text{ Cl})$ ions

"Recall that the electron has negligible mass; thus, ions and atoms have essentially the same mass.

- One mole of atoms, ions, or molecules contains Avogadro's number of those particles
- > One mole of molecules or formula units contains Avogadro's number times the number of atoms or ions of each element in the compound

Calculating Empirical Formulas

One can calculate the empirical formula from the percent composition

Calculating Empirical Formulas

The compound *para*-aminobenzoic acid (you may have seen it listed as PABA on your bottle of sunscreen) is composed of carbon (61.31%), hydrogen (5.14%), nitrogen (10.21%), and oxygen (23.33%). Find the empirical formula of PABA.

Calculating Empirical Formulas

Assuming 100.00 g of *para*-aminobenzoic acid,

C:	61.31 g x	1 mol	= 5.105 mol C
H:	5.14 g x	1 mol	= 5.09 mol H
	JILIYX	1.01 g	
N: :	10 21 a x.	1 mol	= 0.7288 mol N
	10.21 g x	14.01 g	- 017 200 mor N
0:			= 1.456 mol O
	20100 g X	1 mol 16.00 g	

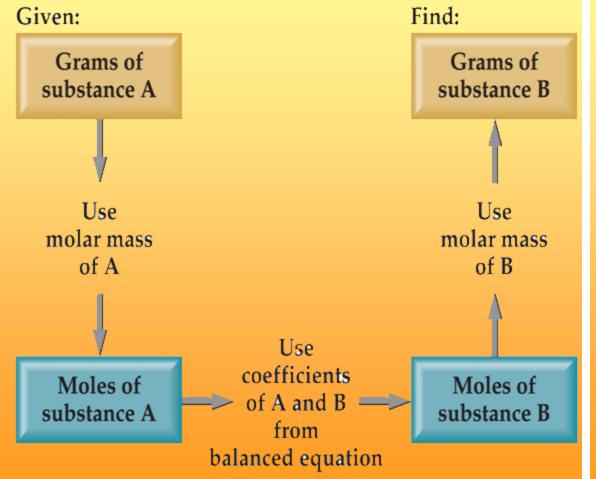
Calculating Empirical Formulas Calculate the mole ratio by dividing by the smallest number of moles:

N:
$$\frac{0.7288 \text{ mol}}{0.7288 \text{ mol}} = 1.000$$

O: $\frac{1.458 \text{ mol}}{0.7288 \text{ mol}} = 2.001 \approx 2$

Calculating Empirical Formulas These are the subscripts for the empirical formula:

 $C_7H_7NO_2$


Stoichiometric Calculations

Equation:	2 H ₂ (g)	+	O ₂ (<i>g</i>)	\longrightarrow	$2 H_2O(l)$
Molecules:	2 molecules H_2	+	1 molecule O ₂	\longrightarrow	2 molecules H_2O
			00		
Mass (amu):	4.0 amu H ₂	+	32.0 amu O ₂	\longrightarrow	36.0 amu H ₂ O
Amount (mol):	2 mol H ₂	+	1 mol O ₂	\longrightarrow	2 mol H ₂ O
Mass (g):	4.0 g H ₂	+	32.0 g O ₂	\longrightarrow	36.0 g H ₂ O

The coefficients in the balanced equation give the ratio of *moles* of reactants and products

Stoichiometric Calculations

From the mass of Substance A you can use the ratio of the coefficients of A and B to calculate the mass of Substance B formed (if it's a product) or used (if it's a reactant)

Stoichiometric Calculations $C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O$

 $1.00 \text{ g } \text{C}_6\text{H}_{12}\text{O}_6 - \dots - \text{ no direct} \\ \text{ calculation}$

Starting with 1.00 g of $C_6H_{12}O_6...$ we calculate the moles of $C_6H_{12}O_6...$ use the coefficients to find the moles of $H_2O...$ and then turn the moles of water to grams

Theoretical Yield

The theoretical yield is the amount of product that can be made

In other words it's the amount of product possible as calculated through the stoichiometry problem

This is different from the actual yield, the amount one actually produces and measures

Percent Yield

A comparison of the amount actually obtained to the amount it was possible to make

Percent Yield = $\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100$

Thank You...